Научный журнал
Научное обозрение. Реферативный журнал
ISSN 2500-0802
ПИ №ФС77-61154

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ВЫЧИСЛИТЕЛЬНОЙ АЭРОДИНАМИКЕ

Хлопков Ю.И. 1
1
В работе излагается обзор методов Монте-Карло, разработанных в вычислительной аэродинамике разреженного газа, и их применение в смежных, нетрадиционных для использования статистического моделирования, областях. Приводится краткая история развития методов, их основные свойства, достоинства и недостатки. Устанавливается связь прямого статистического моделирования аэродинамических процессов с решением кинетических уравнений и показывается, что современный этап развития вычислительных методов немыслим без комплексного подхода к разработке алгоритмов с учётом всех особенностей решаемой задачи: физической природы процесса, математической модели, теории вычислительной математики и стохастических процессов. Рассматриваются возможные пути развития методов статистического моделирования. Общая схема методов Монте-Карло. Проявление методов статистического моделирования (Монте-Карло) в различных областях прикладной математики, как правило, связано с необходимостью решения качественно новых задач, возникающих из потребностей практики. Так было при создании атомного оружия, на первом этапе освоения космоса, исследовании явлений атмосферной оптики, физической химии, моделировании турбулентности. В качестве одного из более-менее удачных определений методов Монте-Карло можно привести следующее: Методы Монте-Карло – это численные методы решения математических задач (систем алгебраических, дифференциальных, интегральных уравнений) и прямое статистическое моделирование (физических, химических, биологических, экономических, социальных процессов) при помощи получения и преобразования случайных чисел. Первая работа по использованию метода Монте-Карло была опубликована Холлом в 1873 году именно при организации стохастического процесса экспериментального определения числа π. Сложная нелинейная структура интеграла столкновения и большое количество переменных (в общем случае - 7) создают существенные трудности для анализа, в том числе и численного и практически исключают конечно-разностный подход для серьёзных задач. И, в тоже время, многомерность и вероятностная природа кинетических процессов создают естественные предпосылки для применения методов Монте-Карло. Исторически развитие численных статистических методов в динамике разреженных газов шло по следующим трем направлениям: использование методов Монте-Карло для вычисления интегралов столкновения в регулярных конечно-разностнных схемах решения кинетических уравнений; прямое статистическое моделирование физического явления, которое разделяется на два подхода: моделирование траекторий «пробных частиц» по Хэвиленду и моделирование эволюции «ансамбля частиц» по Бёрду; построение случайного процесса типа процедуры Уалама-Неймана, описанной в, соответствующего решению линеаризованного кинетического уравнения либо Master Equation Каца. Вероятностная природа аэродинамики разреженных газов так важная для применения и разработки численных схем Монте-Карло естественным образом следует из общих принципов кинетической теории и статистической физики. В книге устанавливается связь прямого статистического моделирования аэродинамических процессов с решением кинетических уравнений и показывается, что современный этап развития вычислительных методов немыслим без комплексного подхода к разработке алгоритмов с учётом всех особенностей решаемой задачи: физической природы процесса, математической модели, теории вычислительной математики и стохастических процессов. Работа выполнена при поддержке РНФ (Грант № 14-11-00709).

Библиографическая ссылка

Хлопков Ю.И. СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ВЫЧИСЛИТЕЛЬНОЙ АЭРОДИНАМИКЕ // Научное обозрение. Реферативный журнал. – 2015. – № 1. – С. 95-95;
URL: https://abstract.science-review.ru/ru/article/view?id=250 (дата обращения: 05.07.2022).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074